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4.6.2 Session on techniques and resources for storm-scale numerical weather

prediction

Kelvin Droegemeier

The recommendations of this group are broken down into three areas: modeling and

prediction, data requirements in support of modeling and prediction, and data

management. The format in this section differs somewhat from that used in the previous

workshop session descriptions, due to the more technical nature of the material.

L Modeling and Prediction

a. Current Status

This group worked under the assumption that the CME would run a realtime forecast

model in support of field operations and to evaluate the model's predictive capabilities as

applied to MCS's and related phenomena. Additionally, the model would provide

assimilated datasets for post-analysis. It is unlikely that massively parallel processing (MPP)

systems will be utilized effectively enough by mid 1995 to play a role in this program, and

thus the group recommended that the model be used on a more conventional (e.g., Cray-

type) platform. However, if significant strides are made in MPP utilization during the next

two years, an MPP option should be left open, particularly in light of the extremely large

memories available on such machines. TheNOAA Forecast Systems Laboratory recently

completed an evaluation of current mesoscale models, and an even more detailed study of

this type is being performed by the Air Force. The choice of a model or models for CME

should be carefully orchestrated, with consideration given to model capabilities, efficiency,

flexibility, and appropriateness for the CME mission.

b. Modeling and Technological Recommendations

The principal unknowns at this point, apart from the model itself, concern data,

initialization methods, validation techniques, computing facilities, and data storage and

display strategies. It is likely that special computing facilities will be required to support

model execution and output archival, as well as collection of rawinput data. The CME

should determine which group or groups will bear this responsibility, and assess the need

79



for upgraded telecommunications capabilities. In order for the model to be effective in
realtime, appropriate data displays must be available. The CME should explore the

accomplishments of various groups in this area (e.g., FSL, University of Illinois). A model

forecast duration of 18 hours is deemed optimal for the goals of the CME.

This group strongly endorses the use of adaptive grids in the realtimeprediction

support, though it is less vocal about the role of adaptive grids in creating the assimilated

datasets for post-analysis. The most plausible strategy for adaptive refinement is to allow

the program to make a "first guess" on optimal grid placement, with augmentations

allowed by the person coordinating the model runs. Although fully automated grid

placement is not yet available, ongoing developments may provide this capability by the

mid-1990s (e.g., work is being conducted in adaptive grid refinement by W. Skamarock at

NCAR, L. Wicker and Texas A&M, M. Xue and K. Droegemeier at CAPS, W.-K. Tao at

NASA GSFC). CME should encourage these groups to make intercomparisJon studies of the

various available models, and re-evaluate the state-of-the-art in adaptive refinement at

various times prior to the field experiment. Thus, the CME should re-evaluate this

recornmendation prior to the actual field program.

Finally, this group wishes to underscore the limitations of a realtime forecast model.

The CME should view the model as a tool for providing statistical or probabilistic guidance,

out to 18 or so hours, and avoid relying on it too heavily for detailed guidance (see

discussion of model validation below). The model used should probably be configured with

a simplified set of parameterizations appropriate for the scales and phenomena being

studies. A mix of guidance products (radar, model, surface and upper air data) will be

optimal supplements to the model.

II. Data Requirements in Support of Modeling and Prediction

We recommend that all available data be used to define the model's initial state.

Techniques to assimilate radial velocity and reflectivity data from WSR-88D systems should

be pursued aggressively; however, it is unclear whether single-Doppler techniques (apart

from VAD) will be mature enough for use by 1995. The choice of a model for this program

should be made carefully, and only after a number of candidate codes have been examined

in light of program requirements. The FSL has already performed such an exercise for its

FAA-related programs, and this information might prove useful to CME. Most mesoscale

models are initialized using analyses based upon NMC gridded fields, perhaps augmented

by available profiler and surface net data. The FSL LAPS analysis, by virtue of its combined
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data types, represents a possible "melting pot" for observations and thus could serve as the
initial state for the mesoscalemodel to be used.

This group feels very strongly that moisture is the key to successful prediction,

modeling, and data assimilation in support of CME. In order to provide high-quality and

spatially-dense measurements, the group recommends the use of rawinsondes, perhaps a

few of which are high quality "reference sondes". Additionally, a few Raman lidars, co-

located with the sondes, would provide important ground truth measurements. It was felt

that the CASH program could be a critical element of CME, provided that it was in place by

the time of the field experiment. Other airlines should be encouraged to participate.

The importance of obtaining "raw" sonde data cannot be overemphasized. Through

the various stages of data processing, a considerable amount of useful information is

discarded from the sondes, including moisture at high levels. Further, the sounding data

are sometimes truncated at levels around 200 mb, thus deleting important information.

This group strongly urges the CME to make provision for the availability of raw sonde data,

and to examine special release strategies to minimize data contamination by nearby storms.

In addition, the CME should consider using only one brand of rawinsonde to ensure

consistency.

Cloud water/ice were identified as important missing parameters in conventional

observations, not only with respect to model initialization, but also for radiation budgets.

Although various assirnilation schemes might provide decent estimates of this variable,

cloud water and ice might be the Achilles heel of the modeling effort, particularly with

regard to the upper levels, where stratiform clouds play such a major role in radiative

processes. Satellite rain retrieval algorithms can provide some inforrnation associated with

the horizontal distribution of cloud water content, though the vertical distribution is less

certain with such methods. Quantitative precipitation measurements were deemed critical

for a number of reasons, particularly because soil moisture depends upon an accurate

assessment of antecedent precipitation.

III. Data Management

Quite often in field programs, data management receives secondary consideration to

science with regard to funding. A number of groups (e.g., FSL, UCAR Unidata) have

developed sophisticated database archival systems, and thus the CME should avoid

reinventing the wheel in this regard. It is not Clear whether all data should be archived at a
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single site, or whether multiple sites should be used. This group favors the single site

strategy for the following reasons. First, a single large facility (e.g.,NCAR) is more likely to

be capable of handling large and multiple-type datasets. Second, such facilities have people
dedicated to this task, whereas other options (e.g., universities) do not and would likely

make data archival a secondary task. Finally, it would probably be easier to ensure

consistency of formats and methods of accessat a single facility.

This group strongly urges the CME to put sufficient resources into data management

since the effective usefulness of the data collected depends, to a large degree, on the

scientist's ability to access it. Given the quantity of data to be collected and generated by the

model, data management is a much bigger issue than in previous field programs. We

propose a heirarchical strategy that provides a user with quick-look data (e.g., a GIF-

formatted image of a few radar display sequences that can be displayed on any X-windows

compatible system) as well as complete menu-driven or command-line-interface ,_riven

query capability over the NSF internet. The CME should stress the use of common and

machine- independent data formats (e.g., netCDF, GRIB, BUFR), and should work with

developers (e.g., FSL, NCAR, Unidata) to make available basic workstation software to the

user community. We suggest that suspect data be flagged, but not changed, during the

quality control process, and reiterate that raw, rather than averaged, raob data be made

available.

5. Summary

The Colloquium and Workshop on Multiscale Coupled Modeling was designed to

bring together a diverse group of modelers, program managers, and other scientists to

address modeling issues of importance to planning for the Cooperative Multiscale

Experiment (CME). The primary purpose of the colloquium was to assess the current ability

of numerical models to accurately simulate the development and evolution of mesoscale

cloud and precipitation systems and their cycling of water substance, energy, and trace

species. The primary purpose of the workshop was to make specific recommendations for

the improvement of mesoscale models prior to the CME, their coupling with cloud,

cumulus ensemble, hydrology, and air chemistry models, and the observational

requirements to initialize and verify these models.

Meteorological programs that could benefit from a multiscale MCS study
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Representatives from six meteorological programs each expressed a potential interest

in collaborating together to achieve the unified purposes of the CME. In particular:

(i) The USWRP will make an effort to synergize with other programs to address the need for

conducting a large multiscale experiment, versus the benefits to be gained from more focussed
objective experiments. The proposed CME would benefit the USWRP by providing high
resolution data for improving forecasting of precipitation and severe weather, the basic

understanding of the limits of predictability and the nature of interactions between processes at the
mesoscale and at smaller and larger scales, and understanding of the impacts of mesoscale weather
events on hydrology. The USWRP recommends conducting OSSE-type experiments to first
determine the need for a large number of rawinsondes in such an experiment.

(2) GCIP would benefit from a cooperative multiscale experiment by providing data for helping to
provide closure on regional and mesoscale water and energy budgets, for initializing and verifying
high resolution atmospheric models, land surface and convective parameterization schemes, and as
input to hydrological models. GCIP is considering providing augmented observations in the form
of additional soundings and surface energy budget stations for a 5-7 year period at some of the
sites composing the profiler hexagonal _:,ray that surrounds the ARM/CART site.

(3) The focus of GCSS is to develop parameterization schemes for mesoscale cloud systems,
including precipitating convectively-driven cloud systems like MCSs, in large-scale models.
Observations from field programs that can adequately measure scale interactive aspects are
required for comparison with cloud-resolving model simulations.

(4) The goal of GVaP is to improve the understanding of water vapor and its variability on all scales, a
goal that would benefit greatly from a multiscale observing strategy. An implementation plan has
been developed for a pilot phase, which includes operation of a Water Vapor Reference Station at
the ARM/CART site for a continuous period of 3 months in late spring of 1995 and intensive
intercomparison of water vapor sensors during part of this period.

(5) The ARM goals are to provide an experimental test bed for improving the treatment of radiative

transfer in GCMs and to improve the parameterization and modeling of cloud formation,
maintenance, dissipation, and related processes in GCMs. Some of the scientific issues that are
critical to the ARM objectives require intensive measurements on a variety of temporal and
physical scales. In addition to the regular measurements at the CART site, a series of intensive
observational periods will be performed for short periods as well as participation in any
cooperative field campaigns in the region.

(6) The AWP aims to improve the weather information provided to the aviation community. This
program would also benefit from participation in a cooperative multiscale experiment by obtaining
data for evaluation of aviation weather forecast products and by making it possible to evaluate the

added benefit of enhanced data sets collected during the experiment on those forecast and analysis
products.

The Cooperative Multiscale Experiment

The scientific objectives of the CME include increasing the understanding of: (1) how

scale-interactive processes generate and maintain MCSs; (2) the relative roles of balanced

and unbalanced circulations in MCS dynamics; (3) the predictability of MCSs; (4) the role of

MCSs in large-scale atmospheric circulations and the relationship of MCS occurrence to
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variations in large-scale flow; (5) what data bases are required to initialize and validate

coupled cloud-resolving/mesoscale models, that may be further coupled with hydrological
or chemical models; and (6) the optimal use of four-dimensional data assimilation to

retrieve cloud and state parameters from remote sensing instrumentation. Bill Cotton's

presentation on the CME emphasized the manifold reasons for why a multiscale

experiment is required to understand MCSs and their interactions with other scales. The
CME scientific steering committee has chosen the central United States as the location for

study of mesoscale convective systems, because of a high frequency of MCS activity in the

spring and summer months, the ability to transfer research results to the data-sparse tropical
environment, and the availability of frequent, high density operational measurement

systems in the central U. S. A cooperative experiment is needed, becauseeven though the

costs of implementing a multiscale experiment is reduced by the considerable observations

already available there, the total additional observing systems needed to provide the

necessary multiscale measurements is still quite expensive ($2-6M). A cooperative program
is a wise investment of resources, so it is important that the above six programs join forces

to implement such a multiscale experiment. Ideally, running the field experiment from
mid-April to mid-August in 1995 would allow sampling both spring storms residing in a
rather baroclinic environment and mid-summer storms which reside in a more barotropic,

tropical-like environment.

Grand scientific challenges

Steve Koch highlighted differences between past convective field experiments and the

present opportunity for a truly multiscale field experiment. Most convective field

experiments in the past have attempted to resolve only the immediate scales of moist

convection using network arrays that spanned two or three atmospheric scales at most,

which has precluded a description of the entire life cycle of MCSs and their interaction with

larger scale systems, the land surface, and trace species. Fortunately, observational,

computer, and data assimilation advances now make it possible to simulate scale

contraction processes from the synoptic scale down to the cloud scale, and interactions

between complex meteorological, land surface, precipitation, chemical, and hydrologic

processes with coupled, multiscale models. Thus, the time is finally right from a technical

and observational perspective to conduct a multiscale, multi-disciplinary field experiment

focused on the mesoscale convection problem. Since numerical models now have the

capability to explicitly resolve mesoscale gravity waves, slantwise convection resulting from

conditional symmetric instability, density current-like microstructures at the leading edge of

cold fronts, mesoscale tropopause folds, detailed land surface characteristics, and many other
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features which are inherently scale-interactive, it is extremely important to muster all the

scientific forces which have an interest in these problems to develop a multiscale field

experiment that contains meaningful meteorological, hydrological, and chemical observing

and modeling elements.

Data assimilation and model initialization techniques

This session covered both current-generation approaches (intermittent and continuous

data assimilation, and physical initialization) and next-generation (variational, adjoint)

techniques. A major issue concerns precipitation data assimilation, in that there are serious

problems in both assimilating techniques and the sources of hydrologic data. The quality

and interpretation of indirectly measured hydrologic cycle data need to be improved, in

conjunction with the development of techniques to retrieve hydrometeors, which are

needed to infer latent heating profiles from sateliltes and WSR-88D radars. In addition,

techniques need to be developed to insert information about fluxes, transports, and other

process rates (e.g., evapotranspiration, rainfall rates, and TOA radiative fluxes) into analyses

in a consistent fashion.

At the convective scale, since the primary observing tool will be Doppler radars, the

key issue is the determination of initial conditions for all model variables from

measurements of radial velocity and reflectivity in combination with other larger-scale data.

Many questions remain on the types of data needed, the spatial density and temporal

frequency required and the amount of error the techniques will tolerate. Much work

remains to incorporate adjoint methods into a data assimilation system for real time

prediction of storm-scale flows. Specification of the initial conditions in regions where no

radar data are available remains an unsolved problem. The use of multi-parameter radar to

initialize microphysical processes in coupled models should be investigated further.

Critical areas for research with variational (or Kalman filter) approaches to data

assimilation include the needs to treat discontinuous processes (e.g., cumulus convection),

reduce the huge computational requirements, and obtain meso- and cloud-scale error

covariance statistics (which can only be obtained from multiscale measurements). Nudging

approaches that employ variational techniques to define relaxation coefficients need to be

further developed and tested to determine their usefulness in mesoscale models.

Measurement and modeling of moist processes

85



Excellent results have been obtained with coupled meso/cloudscale models when

simulating squall line or other convective systems that are strongly forced by fronts or other

lifting mechanisms. Less highly forced systems are difficult to model, particularly in nearly

barotropic environments. In such cases,accurate predictions of MCSs may require: details
about soil moisture, vegetation, outflow boundaries, and gravity waves triggered by earlier

convection; either improved cumulus parameterization schemes or explicit simulation of

deep convection over large domains; and increased upper air sampling to capture weak

short-waves and jet streaks.

Knowledge of the three-dimensional mesoscale structure of the moisture field at

frequent time intervals was echoed by this group, in addition to most of the other groups at

the workshop, as the most crucial required measurement for CME. Concerning the

measurement of water vapor, cloudy conditions compromise the measurements of most

remote _ensing systems, although use can be made of satellite cloud classification schemes

to provide three-dimensional relative humidity fields in cloudy conditions. MCS

measurement strategies must extend well beyond the "visible" cloud boundaries, and must

not be limited to the dynamically active stages of MCSs, but also include observations of

"fossil" MCS residue. In fact, all the important sources and sinks of moisture associated

with MCS genesis and evolution (e.g., large-scale advection, evapotranspiration,

precipitation) must be identified in three dimensions and with sufficient temporal

resolution to be useful for developing, improving, and verifying sub-grid scale

parameterization schemes. Additional needs exist to: couple aerosol and cloud

microphysics models, obtain measurements of aerosols and hydrometeor spectra for

radiation calculations, and provide soundings over the eastern Pacific to identify sub-

tropical jets and jet streaks entering the southwest and impacting the MCS genesis region.

An urgent need exists to integrate satellite, surface and radiosonde data to provide

mesoscale analysis of moisture required for further development and validation of coupled

multiscale models. Hydrological cycle improvements are critically needed to not only

produce accurate precipitation in all kinds of situations, but also to transport moisture

vertically and to improve upon model treatments of clouds as they relate to the radiative

budgets by using explicit prediction of condensate fields and knowledge in the initial state of

the models of the cloud bases, tops, and optical properties.

Parameterization of sub-grid scale convection

The relative importance of convective heat and moisture processes is scale-dependent:

whereas in climate models it is crucial that the parameterization predict the proper
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evolution of the moisture field, at the mesoscale it becomes extremely important to predict

the location and rate of convective latent heat release, as the evolution of mesoscalesystems

is highly dependent upon the diabatic heating. Most current cumulus parameterizations
do not appear to be valid when applied on grid meshessmaller than about 20 km, but when

the grid mesh becomes greater than about 2 km, explicit moisture schemes tend to produce

unrealistically large vertical drafts. Research is needed to determine the best methods of

simulating convection for grid meshes between 2 - 20 km. There are no existing data sets

with sufficient temporal and spatial resolution to verify closure hypotheses contained in

cumulus parameterization schemes. The data must be able to separate the convective

response to grid-scale changes from the grid-scale response to convection. This will require

very high temporal resolution data over multiple scales to analyze complex interactions

between clouds and the mass field, as well as in-situ measurements of thermodynamic

properties and hydrometeors. Rather than direct tests between existing parameterizations,

what is needed is to isolate the major assumptions used tn each scheme and test these

assumptions within carefully controlled experiments in which all other components of the

scheme are similar.

Effects of the moisture field on convection and vice-versa need to be better understood.

Further research is needed to develop cumulus parameterization approaches that predict

convection in terms of the physical processes that directly cause clouds to form. In addition,

development of MCS momentum-exchange parameterization techniques is badly needed,

particularly for climate models and other coarse-grid models. However, the most critical

process that needs to be determined to improve cumulus parameterizations is the rapid

interaction between the clouds and the mass field on meso-beta through synoptic scales.

The best way to infer these interactions is by observing the divergent component of the

winds. It should be possible to use wind profilers to interpolate in time between

rawinsonde sampling times. In addition, high temporal and spatial resolution

measurements of the three- dimensional atmospheric winds on the scale of 2-20 km need to

be obtained using doppler radar. Convection is much more of a multi-scale phenomenon

than is commonly realized; experiments that have focused only on the structure of

individual clouds or MCSs have not been able to resolve the nature of the processes that

cause convection or to document the complete effects of convection upon larger scales.

Coupled land surface�hydro logic�atmospheric models

Evapotranspiration modeling presents the most serious challenge in these coupled

models, because of its complexity, yet its importance to the development of convection.

87



Soil-water content is the single most important land-surface variable in atmospheric

prediction models. There is a critical need for time-series measurements of soil moisture

profiles to complement other mesoscale data, particularly in the dryline-prone regions of

the High Plains contained within the CME enhanced observational area. Explicit modeling

of the fully interactive relationship between the heterogeneous surface, boundary layer and

clouds can lead to more accurate predictions of cloud onset and amount over land surfaces.

The CME presents opportunities to expand upon our present inadequate knowledge of

mesoscale circulations forced by inhomogeneous land surface characteristics, and to develop

approaches for parameterizing their effects in mesoscale and larger-scale models. The

linkage between boundary-layer thermals and the characteristics of the underlying surface

also should be investigated in CME. The influence of spatially coherent fluxes that result

from landscape heterogeneity are not included in current models. Fortunately, valuable

representations of several aspects of the landscape pattern currently exist, including digital

elevation data an_t measures of the leaf area index (i.e., NDVI from AVHRR data). A major

deficiency, however, is the lack of an ability to sample spatially representative shallow and

(especially) deep soil moisture. Numerous mesoscale modeling and observational studies

have demonstrated the sensitivity of planetary boundary layer structure and deep

cumulonimbus convection to the magnitude of the surface moisture flux.

Latent heat, sensible heat and net radiative fluxes are needed at enough sites to

characterize means and variability in order to scale up from the hydrology catchment scale

to the MCS scale. It was recommended that high-resolution OSSEs should be conducted to

examine sensitivity of the atmosphere to the quality, distribution, and sampling of various

land surface and vegetation parameters prior to CME. Specific measurements that may be

needed include vegetation cover, soil characteristics, and terrain data on 1 km scales,

recording and archiving of WSR-88D data, automated soil moisture profiles by neutron

probe, dual ground based Doppler lidar to characterize boundaries, and new types of

measurement platforms for economical boundary layer measurements such as

instrumented radio-controlled aircraft. The CME planning committee should also

incorporate satellite remote sensing technologies, especially FIFE results, into the project

design and operation.

There is a need to permit two-way interactions between the atmosphere, and

biophysical and hydrologic processes. This feedback is essential in order to properly

represent the control on transpiration of water into the boundary layer environment.

These interactions point to the necessity for interdisciplinary activities in the CME.

Involvement by the hydrology, ecology, and chemistry communities would be mutually
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beneficial. For example, since stomatal conductance of water is directly related to carbon

dioxide fluxes, these models must also influence dry deposition of other chemical species,

particularly hydroscopic aerosols and gases. Likewise, meteorological models require

knowledge of soil hydraulic properties for input to surface layer parameterizations.

Correspondingly, an accurate characterization of precipitation, evapotranspiration, and

landscape structure is necessary for input to hydrology models. A similar relationship exists

with the ecological modeling community. Atmospheric models are strongly affected by

vegetation processes, while the ecological community needs atmospheric information to

properly simulate soil and vegetation biophysics (e.g., the soil carbon budget).

Incorporation of the planetary boundary layer in atmospheric models

The planetary boundary layer (PBL) plays a crucial role in coupled mesoscale systems,

because of its importance in transporting momentum, heat, and moisture from the surface

into the systems. Despite major progress over the last two decades in modeling the PBL,

very little is known about the influence of mesoscale variability on PBL and turbulence

statistics, since the parameterization of boundary layer processes for use in larger scale

models has been based almost exclusively on observations collected for horizontally

homogeneous surface conditions under simple, slowly time-varying synoptic weather

conditions.

Another issue concerns how cumulus-induced subgrid-scale effects should be included.

Mesoscale cloud systems strongly modify the underlying PBL structures due to the effects of

detraining cumulus downdrafts, cumulus-induced subsidence, cloud cover modulation of

radiation inputs into the PBL, and rain evaporation. Since these modifications often change

the subsequent mesoscale system development, it is important to incorporate these

modifications into PBL parameterizations. For example, it is not clear how to incorporate

the formation and dissipation of PBL stratiform clouds in models, yet frontal systems are

typically associated with such clouds. Often too thin to be resolved in the vertical grid, these

stratiform clouds need to be included in the PBL parameterization. Stratus-type clouds and

their effects on mesoscale systems are deserving of much study, since not only do these

clouds play an important role in the climate-radiation budget, but they may also be

important for the development of mesoscale frontal system circulations. A stratus-topped

PBL is much more complicated and less understood than clear PBLs, because its structure is

strongly affected by many additional physical processes.
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In order to better understand the underlying PBL effects on MCSs, we need to learn first

how the PBL structure evolves along with the overlying convection and how it varies

spatially within the system. For this purpose, we need to design field experiments that can

simultaneously measure the PBL and the overlying convection. This may require using

aircraft, acoustic sounders, wind profilers, lidars, and radars simultaneously. The use of

chemical species as tracers in observing the transport properties of PBL turbulence and

clouds was highly recommended. Before the CME takes place, we need to gather

information on what prior field experiments have and have not learned.

Funds should be provided not only for carrying out field programs, but also for their

design and for the analysis of their data. Formation of a working group to evaluate and

develop PBL models in the mesoscale context would be highly beneficial to CME. Although

large-eddy simulations (LES) should play a major part in such an evaluation, the LES

database is limited to horizontally homogeneous PBL types. We must depend on

observations for more complicated PBL cases. We may also want to apply this evaluation

process to coupled land process-PBL models, coupled cumulus parameterization-PBL

models, and coupled air chemistry-PBL models.

The role of radiation in mesoscate flows: physics, parameterizations, codes

It is vitally important to expand our basic knowledge of how MCSs influence climate

through their extensive cloud shields and increase of humidity in the upper troposphere.

In order to accomplish this task, it will be necessary to improve radiation parameterizations

used in mesoscale and GCM models. One of the most critical problems facing modelers

presently is that no consistent radiation-microphysical coupling exists in current mesoscale

radiative transfer schemes. It will be extremely helpful to develop and validate a

community radiative transfer code suitable for use with mesoscale models, and to establish

an intercomparison project to isolate and understand radiative processes in mesoscale

models.

Equally important is the need to improve our understanding of the influence of

radiation and cloud microphysical properties on MCS dynamics due to diabatic heating,

production of condensate, and vertical and horizontal heat fluxes. Observational

requirements concern the needs to determine MCS related cloud optical properties, such as

optical thickness, their morphology, and microphysical composition. It should be a major

scientific objective of CME to provide observations to establish the radiative budgets of

different kinds of MCSs throughout their entire life cycle. It is also essential to consider
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how to convincingly present results from mesoscalemodels and field studies in their more

global climate context, and how experiences in other radiation and climate related projects
(ARM, FIRE, etc.) could contribute to the design of the CME field project.

Chemistry on the mesoscale: modeling and measurement issues

This session reviewed the current knowledge and research needs for chemistry on the

meso and cloud scales. First, tropospheric ozone is a multiscale problem (urban, regional,

global). Treatments of surface and boundary layer processes (including natural HC

emissions from vegetation) and cloud venting are required for understanding the

production and distribution of ozone in the troposphere. Uncertainties that exist in many

modules of regional and cloud-scale chemical models could be reduced by incorporating

chemical measurements and modeling into the CME. Conversely, the use of chemical

tracers in a CME can help define air motions on both cloud and mesoscale. A-major model

limitation is that deposition of trace gases to the surface and emission of other species from

the soil and from vegetation need to be better specified in the models. In addition, the

simulated diurnal variation of the boundary layer depth needs to better follow observations.

Cloud microphysical schemes and treatment of radiational characteristics within and

surrounding a cloud remain the largest uncertainties of cloud-scale models. When

photochemical models are run in conjunction with cloud models, there are large

uncertainties in the photolysis rates within and above the cloud. These models are limited

by a lack of observational data to verify convective transport of ozone precursor gases and

subsequent ozone production. In particular, confirmation of the predicted magnitudes of

cloud outflow and downstream photochemical ozone production is needed in a concerted

chemical-mesoscale field program. Also needed is vastly improved information on the role

of cloud microphysical processes in chemical scavenging and the role of lightning in NO

formation.

Specific observational requirements consist, first of all, of the need to supplement

surface hydrology and meteorology field studies in CME with chemical flux measurements

to enhance the data base for deposition and emissions for use in regional modeling. Fluxes

of CO 2, 0 3, NO x, and NOy should be measured in conjunction with fluxes of sensible heat,

latent heat, soil heat, as well as albedo and vegetation characteristics. Profiles of these

species should be measured simultaneously with those of temperature, humidity, and

winds. Scale issues should be addressed over heterogeneous land use and terrain. Using

measurements of chemical species concentrations as passive tracers in the vicinity of

convective storms, it is possible to directly assess the dynamic exchange of air within an
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atmospheric column. This group proposed that carbon monoxide and ozone budgets be

defined and used to assess the vertical exchange of air during conditionally unstable

conditions. These chemical measurements will provide a valuable additional set of

observations that can be used to assess the performance of cumulus parameterization

schemes. Furthermore, inert tracers like SF 6 and perfluorocarbons can be released by

aircraft, both above and within the mixed layer, during episodes of deep, penetrative

cumulus convection to determine the overall transport due to an ensemble of

nonprecipitating cumuli. Concerning the need to determine the degree of deep convective

enhancement of ozone production, the CME must acquire sufficient data over thousands of

square kilometers with a ground-based network of soundings, profilers, at least two Doppler

radars and aircraft flying in and near convective cells. Characterization of the chemical

environment can be done with two aircraft and minimal surface instrumentation;

however, a third aircraft with limited chemical instrumentation is strongly preferable.

Validation of mesoscale models

Recent numerical simulation of ocean cyclones and mesoscale convective systems

using nonhydrostatic coupled cloud/mesoscale models with a grid size as small as 2-km

have demonstrated the potential of these models for predicting MCSs, squall lines,

hurricane rainbands, mesoscale gravity waves, and mesoscale frontal structures embedded

within an extratropical cyclone. Although these models have demonstrated strong

potential for use in operational forecasting, very limited quantitative evaluation (and

verification) of the models has been performed. As a result, the accuracy, the systematic

biases, and the useful forecast limits have not been properly defined for these models. It has

been shown that systematic errors in predicted synoptic-scale fields adversely affect a

model's ability to predict MCSs. No serious attempts have yet been made to use such

models for operational prediction of mesoscale convective systems.

The key element in verifying mesoscale forecasts is the aw_ilability of mesoscale

obserw#ions. In order to perform a comprehensive verification of mesoscale prediction,

high quality "assimilated fields" are needed. Therefore, it is essential to develop a "state-of-

the-art" mesoscale data assimilation system to produce IIIb analysis for CME, with a

horizontal resolution of ~10 km. Broad rawinsonde coverage at a variety of scales is needed

if we are to capture the genesis, development and dissipation stages of the MCS. This is

essential if we are going to advance cloud/mesoscale models for predicting the initiation

and organization of mesoscale convective systems. High resolution, high quality moisture

measurements (including precipitation) are required to validate model hydrological
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processes. Finally, comprehensive dual Doppler radar coverage is required to validate

couple meso/cloudscale model simulations of MCS circulations. The scientific steering

committee for CME should also consider collaborating with the COMPARE project by

providing a set of scientific hypotheses to be verified by coordinated numerical

experimentation using data and analyses drawn from a CME event.

Techniques and resources for storm-scale numerical weather prediction

This group recommended that the CME define a model (s) to be used for both real-time

forecast assistance in the field operations, as well as for assimilating the observations and to

evaluate the model's predictive capabilities. The choice should be carefully made, with

consideration given to model capabilities, efficiency, flexibility, and appropriateness for the

CME mission. The model should probably be configured with a simplified set of

parameterizations appropriate for the scales and phenomena being studied. The CME also

needs to determine which groups will bear the responsibility of providing special

computing facilities to support model execution and output archival.

Other principal unknowns at this point concern data, initialization methods,

validation techniques, computing facilities, and data storage and display strategies. It will be

necessary to assess the need for upgraded telecommunications capabilities. In order for the

model to be effective in realtime, appropriate data displays must be available. The CME

should explore the accomplishments of various groups in this area. The use of adaptive

grids was strongly endorsed in the realtime prediction support, though the role of adaptive

grids in creating the assimilated datasets for post-analysis is not so strongly advocated. CME

should encourage groups to re-evaluate the state-of-the-art in adaptive refinement at

various times prior to the field experiment.

This group felt very strongly that moisture is the key to successful prediction,

modeling, and data assimilation in support of CME. In order to provide high-quality and

spatially-dense measurements, the group recommends the use of rawinsondes, perhaps a

few of which are high quality "reference sondes". Additionally, a few Raman lidars, co-

located with the sondes, would provide important ground truth measurements. It was felt

that the CASH program could be a critical element of CME, provided that it was in place by

the time of the field experiment. The CME should make provision for the availability of

raw sonde data, and examine special release strategies to minimize data contamination by

nearby storms. In addition, only one brand of rawinsonde should be used to ensure

consistency. Cloud water�ice were identified as important missing parameters in
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conventional observations, not only with respect to model initialization, but also for

radiation budgets. Although various assimilation schemes might provide decent estimates

of this variable, it might be the Achilles heel of the modeling effort, particularly with regard

to the upper levels, where stratiform clouds play such a major role in radiative processes.

Finally, from both political and scientific viewpoints, it would be wise to emphasize

linkages between CME and climate. For example, medium-range prediction experiments
could be conducted to assessthe impact on their accuracy of CME data. Further, the CME

data could be used to validate parameterizations used in global models, and to make

assessmentsregarding the impact of orphan MCS cloud residue on medium- and long-term

predictions and climate change. Finally, most cloud-impact climate studies have been
focused on the tropics, where the moisture content at mid- and upper-levels is a key

element in cloud-radiative forcing. The CME could uniquely provide information on

moisture transports from the tropics to mid-k, titudes, with emphasis on global responses.
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CO_TR_iU, ITIlON_ OF PRINCIPAL PROG_UlS

TO GCSS

GCIP

\
• Limited-area modeling

• Coupling of mesoscale
processes with terrestrial

surface and hydrology

ARM

Central U.S.
Tropical W. Pacific

• Radiation - microphysics-
dynamical coupling

USWRP TOGA COARE

• Data sets on continental

(large-scale) interactions

• Intensive data sets on

mesoscale dynamics

• Hierarchical organized
systems ('big picture')

• Coupling with ocean
surface, radiation,
large-scale dynamics

Fig. 3 The relationship of GCSS to other principal programs.
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Fig. 4 The ARM/CART site and its relationship to other nearby observing systems,
including the NEXRAD facilities, the inner hexagon of wind profilers, various
watersheds, and the National Severe Storms Laboratory dual Doppler radars.
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Fig. 5 The sensor components of the CART central facility and extended (auxiliary and
boundary) facilities.
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sites proposed for the Cooperative Multiscale Experiment. Also shown are the
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Fig. 9 The NEXRAD radar sites (open circles) and proposed research Doppler radar
sites (hatched circles) proposed for the Cooperative Multiscale Experiment. Range
circles are 100 km radius.
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Fig. 10The proposedbeta-networkradarsitesproposedfor the CooperativeMultiscale
Experiment,consistingof NEXRAD (+) andresearchDopplerradars(R).
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Example of convergent initial wind field at the surface triggering

premature convection in the PRE-STORM area

I

H

0

divergence (negative areas dashed)

Accumulated convective precipitation

Note the strong convergence
here due to convergent initial
wind fields

The "bogus" convectlon In
the prestorm area mlsed the
soll molsture, Inhlbltlng the
dlumal heatlng In the PRE-
STORM area. No MC.S
formed In thls slmulatlon

The contouring here shows

where the parameterization
has been active. Note the

circled region of convective

activity in the PRE-STORM

region.

These plots are at 2.5 hours of simulation time, 8:30 AM local time
Fig. 11 2.5-hr RAMS model forecasts of surface divergence and convective precipitation

fields for the 23-24 June 1985 PRE-STORM case.
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squall line from GTE/ABLE 2B. (a) Forward trajectories from 0.3 km level show
where air is transported and detrained during convection; (b) convective redistribution
of NOx from Manaus, Brazil, plume at end of 4 hours simulation with 2D cloud tracer
model; (c) Effect of convection on 03 photochemical production rate (24-hour

integrated rate of 03 formation) due to convection. Solid line represents 03
formation in "undisturbed" air; dashed lines refer to 03 formation based on cloud-

processed NOx profiles shown in (b). After Pickering et al. (1992c).
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